Estimating Electrofishing Thresholds…Without Fish??

Electrofishing thresholds are the minimum settings (volts, watts, amps) needed for successful fishing. We teach biologists to aim for thresholds so that they can acquire the samples they need for research or for management and yet avoid negative impacts on the fish or other aquatic organisms which could be affected. Normally, we help develop conservative goal settings for a given situation and ask biologists to begin there and to make minor changes while fishing so as to determine those thresholds. But is there another way to estimate such thresholds? This blog explores an attempt at estimating electrofishing thresholds using electrical measurements made at the boat ramp.

Continue Reading..

Electrode Resistance: How Important is Surface Area?

In early 2016, I published a paper, “Spheres, rings and rods in electrofishing: Their effects on system resistance and electrical fields” (Transactions of the American Fisheries Society 145:239-248, 2016). My aim was to elucidate the relative importance of size and shape of common electrodes in determining electrical resistance of electrofishing systems and the intensity and size of the electrical fields they produce. In that paper, I did not cover the relationship of electrode surface area to resistance; instead, I am reporting that information in this blog.

Continue Reading..

Grass Carp Effective Conductivity – Part A

This blog is being presented it two parts. Part A involves the lab trials to determine Grass Carp effective conductivity, Cf, and power density at match, Dm. Refer to prior blogs at this site on the power transfer theory and on lab experiments for more information about terms, setup and procedures.

Continue Reading..

Electrical Fields from Model Anode Arrays

Electrical fields around electrofishing anodes are critical to fish capture effectiveness. The size, shape and intensity of those electrical fields are determined by the anode design and deployment in the water as well as by the electricity applied to them.  There were two main questions to answer in this little study: (1) Could accurate electrical measurements be made from approximately ¼ scale model electrodes in a small body of water, and (2) Would those measurements provide useful information about the effect of anode ring size on their electrical fields?

Continue Reading..

Pulse Shape Affects Fish Immobilization Threshold

Modern electrofishing pulsator (control box) manufacturers as a whole produce a variety of direct current pulse shapes. Which of these are more effective or more efficient for fish capture? We have noticed some differences in fish reaction thresholds and overall behavior when exposed to different pulse. For years, I have wanted to compare various pulses under controlled laboratory conditions. The challenge has been acquiring a suitable power supply that can produce the desired pulse shapes. That opportunity recently became available.

Continue Reading..

Power Transfer Theory of Electrofishing, in a Nutshell

Fisheries biologists have known for a long time that many factors affect fishing success. The most important environmental factor is the conductivity of the water, i.e. its ability to conduct an electrical current due to the concentration of ions in the water. Water conductivity has been used as independent variables in multiple regression equations or as covariates to estimate catch per unit effort or some measure of capture efficiency. For decades, biologists made equipment adjustments to compensate for varying water conductivity in an ad hoc fashion without a guiding principle.

Continue Reading..

Procedures for Lab Experiments in Tanks

Alan Temple wrote a blog, Setting Doses for Lab Experiments, which I followed with Setup for Lab Experiments in Tanks. That was followed by a short one, Size Matters, on the effect of fish size on the threshold voltage gradient and power density for immobilization or other responses. This blog discusses some aspects of how a tank study is conducted. Specifically mentioned are the fish themselves, the desired response to be assessed, how that response is to be evaluated, and two primary approaches for quantifying the results.

Continue Reading..

Size Matters

Yes, size matters…and that includes fish size when electrofishing. Large fish are immobilized with less field intensity or power density than are small fish.  Large fish sustain a higher total dose of electrical energy than do small fish; this is sometimes referred to as whole body voltage. An excellent paper on this topic is Dolan, C.R. and L.E. Miranda. 2003. Immobilization thresholds of electrofishing relative to fish size. Transactions of the American Fisheries Society 132:969-976. This short blog provides results of a simple study with various sizes of alligator gar.

Continue Reading..

Setup for Lab Experiments in Tanks

Dr. Alan Temple posted a blog on December 9, 2015 entitled “Setting Doses for Lab Experiments.” He suggested that I submit a blog on other aspects of lab studies in tanks. This blog covers the setup of tank studies for electrofishing research, and I plan to submit a companion blog on procedures for tank studies. Important aspects to consider for lab studies are the test tank, the electrodes, the power supply and the electrical field.

Continue Reading..

Setting Doses for Lab Experiments

Experimental set-up for small fish. Picture by Dr. Jan Dean

Lab or tank experiments on fish have been around for decades, beginning with studies of fish behavior in electric fields.  Presently, tank experiments are used for evaluating the effectiveness of candidate waveforms, estimating thresholds for various reactions that assist capture, guidance, and electrosedation, and determining probability of trauma.  While insights gained by lab work, in combination with field trials, can and have improved fisheries sampling and provided insights for risk analysis, there are pitfalls that can sink the ship.  A couple problems that often occur are the rationale for setting dose levels and the actual description of dose levels.  These issues can lead to misinterpretations, inappropriate management decisions, and constrain application of experimental results.  In fact, dose setting is becoming a big issue in electrofishing experimentation.  I have seen studies lately that have used incredibly high doses, in fact extreme overdoses, preventing a connection from the lab to application in the field.  I think the results of those studies are relatively meaningless.  And, most of the disconnect is due to a poor understanding of electric fields generated by common sampling gears and typical exposure times while electrofishing.

Continue Reading..

Footer background

Drop us a line

Yay! Message sent. Error! Please validate your fields.
Clear
© 2015 Thread One Page. Imagery: Tom Rayner, Alan temple, Richard Pearson, Paul Godfrey, Roger Scott, John Rayner.